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ABSTRACT 

 
This paper provides an introduction for non-experts to first-principles electronic structure 

methods that are widely used in condensed-matter physics.  Particular emphasis is placed on 
giving the appropriate background information needed to better appreciate the use of these 
methods to study actinide and other materials.  Specifically, I describe the underlying theory 
sufficiently to enable an understanding of the relative strengths and weaknesses of the methods.  
I also explain the meaning of commonly used terminology, including density functional theory 
(DFT), local density approximation (LDA), and generalized gradient approximation (GGA), as 
well as linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and 
pseudopotential methods.  I also briefly discuss methodologies that extend the basic theory to 
address specific limitations.  Finally, I describe a few illustrative applications, including quantum 
molecular dynamics (QMD) simulations and studies of surfaces, impurities, and defects.  I 
conclude by addressing the current controversy regarding magnetic calculations for actinide 
materials. 

 
PACS:  71.15.Mb, 71.15.Nc 

 
I. INTRODUCTION 

 
First-principles electronic structure methods are quantum mechanical methods for 

numerically solving the Schrödinger (nonrelativistic) or Dirac (relativistic) equation for systems 
of electrons 
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Equation (1) is the time-independent Schrödinger equation.  The term “first-principles” simply 
means that there is no empirical fitting, or equivalently, no adjustable parameters.  The term “ab 
initio” is sometimes used instead and means the same thing.  This aspect of the methodology is 
important in order for it to be predictive.  In other words, when applied to a new system it is not 
necessary to make any adjustments but rather there is an expectation that the methods will be 
applicable.  Another important quality that makes first-principles methods predictive is that they 
are accurate.  In the present context that means they have been well tested against experiment.  
Naturally these methods do have limitations and I will discuss some of them in this paper.  
Another characteristic, which could also be viewed as a limitation, is that first-principles 
methods are very computationally expensive.  In condensed-matter physics the term first-
principles usually refers to a method that is based on density functional theory (DFT).  The first 
two-thirds of this paper will be devoted to an overview of DFT.  I believe that it is important to 
understand a few technical details in order to better appreciate the application of these methods.  



Some of the material that I will discuss in this paper can be found in greater detail in a recent 
book written by Richard Martin.1  I have made no attempt to provide a comprehensive set of 
references to the literature but instead cite only a few representative examples along with some 
of the key pioneering work. 

 
II. DENSITY FUNCTIONAL THEORY (DFT) 

 
In 1964 Hohenberg and Kohn2 proved that the exact ground state energy for a system of 

interacting electrons is a universal functional of the electron density (a functional is simply a 
function of another function) 
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This theorem is the basis of the name density functional theory—a theory concerning a 
functional of the density.  Note that the energy and the density are the fundamental quantities of 
the theory.  This theorem is important for two reasons.  Firstly, it says that all of the complexities 
of the full many-body quantum-mechanical problem are captured by a universal functional.  
Secondly, once we have the electron density we can then obtain all of the ground state properties 
of the system.  However, there is also an important limitation because the theorem is only an 
existence proof since the universal functional in equation (2) is actually unknown. 

 
A year later in 1965 Kohn and Sham3 provided the means for turning DFT into a practical 

method.  They assumed that the electron density could be written in terms of single-particle 
wavefunctions φk(r) of an auxiliary non-interacting system 
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The assumption in equation (3) leads to a set of one-electron Schrödinger-like equations 
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Equation (4) looks similar to the Schrödinger equation for a hydrogen atom and has the natural 
interpretation of a single electron existing in an effective density-dependent potential, Veff, 
arising from all of the other electrons (mean field).  While this interpretation can be very useful 
in many circumstances, there is in fact no formal justification for this view.  The user should 
therefore exercise caution and be aware of the risk involved.  In particular, the total energy EGS 
and electron density ρ(r) are the fundamental quantities, not the one-electron eigenvalues (band 
structure) εk and wavefunctions φk(r).  As we have seen, the one-electron eigenvalues and 
wavefunctions are actually just mathematical constructs.  It is therefore somewhat ironic that 
DFT-based methods are sometimes referred to as “band-structure” methods, in reference to the 
one-electron eigenvalues.  Nonetheless, equation (4) is important to the theory itself because it is 
amenable to standard numerical methods.  The procedure is to first make a guess for the one-
electron wavefunctions in order to construct the effective potential, Veff, solve equation (4) for a 
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new set of wavefunctions, and repeat this process until the input and output wavefunctions are 
the same (self-consistent). 
 
A. Some strengths and weaknesses of density functional theory 

 
The real strength of DFT-based methods is in calculating ground-state properties that can be 

obtained from the total energy.  For example, by calculating the energy as a function of volume 
one can obtain the pressure 
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Similarly, the equilibrium volume can be calculated by determining the volume at which the 
calculated pressure is zero (minimum in the energy) 
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The second derivative (curvature) of the energy with respect to volume is related to the bulk 
modulus 
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By calculating the energy (and pressure) as a function of volume for a material in different 
crystal structures it is possible to predict pressure-induced phase transitions, as illustrated 
schematically in figure 1.  Calculations of this type by Yin and Cohen4 in 1982 for the case of 
silicon were among the first to demonstrate the power of DFT-based methods.  A more recent 
example is the work of Söderlind and Landa5 for the actinide material americium.  They find a 
phase transition from the face-centered cubic (fcc) structure to a face-centered orthorhombic 
(fco) structure at a pressure of 100 kbar.  The corresponding experimental transition pressure is 
107 kbar. 

 
As I stated previously, it can be risky to interpret the one-electron eigenvalues εk in equation 

(4) as giving the band structure of the material.  In particular, it is well known that the calculated 
band gaps in semiconductors and insulators are too small in comparison to experiment.  As 
shown in figure 2 the calculated band gap for silicon is 0.5 eV but the experimental gap is 1.2 
eV, more than a factor of two larger.  One view of this result is that the method does not work 
very well.  An alternate view more in keeping with the discussion here is that the one-electron 
eigenvalues are not the fundamental quantities in the theory and that care must be taken in their 
interpretation. 

 
B. Local density approximation (LDA) and generalized gradient approximations (GGAs) 

 
Hohenberg and Kohn2 proved that a universal functional of the density exists but since the 

form is unknown it is necessary to make an approximation is order to carry out practical 
calculations.  Kohn and Sham3 also addressed this issue.  They started by separating out the 
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known contributions to the functional from the unknown piece containing the complex many-
body interactions 
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The classical coulomb energy is simply the energy of the classical distribution of charge 
associated with the electron density.  The unknown piece is labeled as the exchange-correlation 
energy Exc.  Kohn and Sham proposed that the contribution to Exc at each point  r  be evaluated 
using Exc of the uniform electron gas corresponding to the local density  ρ(r) and then integrated 
to obtain the total Exc.  This approximation is called the local density approximation (LDA).  In 
practice the exchange-correlation energy for the uniform electron gas is obtained by 
parameterizing the results of accurate quantum Monte Carlo simulations for the electron gas.6  
The term “local” in this context means that the exchange-correlation energy at a given point 
depends only on the electron density at that same point.  In a “non-local” theory the exchange 
correlation energy at one point could depend on the density at other points as well.  This idea is 
illustrated schematically in figure 3.  In a local approximation the exchange-correlation energy at 
point  r1  is the same for both the “A” and “B” electron densities because they are both equal to 
ρ1 at this point.  However, in a non-local theory the exchange-correlation energy for A and B at  
r1  could be different because the electron densities are not the same at other points.   
 

The local density approximation is surprisingly simple but has also been stunningly 
successful.  Clearly the approximation should work best in cases where the density is slowly 
varying, or equivalently, when the density gradients are small (the gradient is simply the three-
dimensional first derivative).  In some sense the local density approximation can be considered 
as the first constant term in a Taylor-series-like expansion.  It is natural to try to improve upon 
the approximation by including information not only about the density but also the density 
gradient 
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However, the naïve idea of simply using a Taylor series expansion does not work because the 
density gradients are too large and the Taylor series does not converge.  It is therefore necessary 
to be more careful in the manner of including density gradient information, leading to the term 
generalized gradient approximation (GGA).  While it is possible to obtain information about the 
gradient dependence of the exchange-correlation energy from quantum Monte Carlo simulations 
and other analyses, it proved difficult to formulate a generalized gradient approximation that 
uniformly improved upon the results of the local density approximation.  For this reason the 
early GGAs were not uniformly successful.  However, more recent GGAs are more generally 
accepted with the caveat that some GGAs are better suited to condensed-matter systems while 
others are better suited to finite-sized molecules and clusters. 

 
Generalized gradient approximations are most appropriate in cases where there are large 

density gradients.  One example is the case of isolated atoms.  It had been known for a long time 
that the cohesive energies (energy to separate a system into isolated free atoms) obtained using 
the local density approximation were inaccurate.  It was long assumed that the problem was with 
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the free atom limit and since there are large density gradients in isolated atoms it is not surprising 
that GGAs improve calculated cohesive energies in comparison to experiment.  Density 
gradients are also large in actinide materials (high Z) and therefore GGAs are commonly used 
when studying these materials.  Another less obvious example is the case of pressure-induced 
phase transitions, as illustrated schematically in figure 4.  If the relative energy difference 
between low- and high-pressure phases (see figure 1) increases with the use of a generalized 
gradient approximation then the calculated transition pressure can increase relative to the 
pressure calculated using the local density approximation.  In addition, calculations using GGAs 
usually result in larger equilibrium volumes and smaller bulk moduli in comparison to 
calculations based solely on the local density approximation.  GGAs certainly do not solve all of 
the failings of the local density approximation.  For example, GGAs do not fix the 
semiconductor gap problem because this is not a density gradient issue. 

 
C. Pseudopotentials, LMTO, LAPW, and all that 

 
Pseudopotential, linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), 

and many other methods simply correspond to different numerical procedures for solving the 
one-electron Schrödinger-like equations given above in equation (4).  The most important point 
to note is that all of these methods are used to solve the same density functional theory equations 
and therefore they can all be equally accurate if properly applied.  It is certainly true that 
different groups often obtain differing results but it is very frequently the case that the 
differences are numerical in nature.  A primary difference among the various methods is the 
manner in which the core electrons are treated.  In pseudopotential-based methods the core 
wavefunctions are assumed to be unchanged in the solid (or liquid) and therefore they are 
removed from the problem and replaced by an effective ion core or “pseudopotential.”  
Conversely, in all-electron methods such as LMTO and LAPW both the core and valence 
electrons are treated self-consistently.  All-electron methods are sometimes prefixed with the 
phrase full-potential (FP).  This phrase refers to the fact that in certain methods the crystal 
potential is assumed to be spherically symmetric in the regions of space near the atoms but that a 
full-potential method does not make this approximation and should therefore be more accurate.  
At an even finer level of detail the difference between methods such as LMTO and LAPW is in 
the particular mathematical functions that are used to describe the one-electron wavefunctions.  
There can be various reasons for choosing a particular method over others.  Pseudopotential 
methods scale better to large system sizes and are most often used in parallel computing 
applications.  All-electron methods are less frequently used in general but are usually preferred 
when the core electrons are important.  Examples include the presence of shallow core states 
(e.g. actinides) and in high-pressure studies since at higher pressures the core states shift upwards 
in energy toward the valence. 

 
D. Going beyond density functional theory 

 
Density functional theory has well-known limitations including the treatment of excited 

electron states (e.g. semiconductor band gaps and excitons—bound electron-hole pairs) and 
strong electron-electron correlation (e.g. localized f-electrons in actinide materials).  A 
description of methods that go beyond density functional theory in order to address these 
limitations is beyond the scope of the present paper but I will briefly mention a few important 
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examples.  The GW method7 is used to calculate quasiparticle energies (excited states) and has 
been very successful in calculating accurate band gaps for semiconductors and insulators.  
Methods based on the two-particle Bethe-Salpeter equation8 include the effect of the electron-
hole interaction and are able to accurately treat excitons.  Dynamical mean field theory (DMFT)9 
has the potential to combine the first-principles aspect of density functional theory with a more 
accurate treatment of strongly correlated electrons.  It has been applied to f-electron materials 
including the volume collapse transition in cerium10 and the phonon spectrum of δ-phase 
plutonium.11

 
III. APPLICATIONS OF DENSITY FUNCTIONAL THEORY 

 
There are far too many applications of density functional theory to even attempt to list them 

all here.  Instead I will briefly describe a few examples to illustrate the wide variety of problems 
that can be treated.  Applications directly related to the total energy are typically more reliable.  I 
have already discussed the equation-of-state (pressure as a function of volume) and pressure-
induced phase transitions.  Other examples include calculations of the elastic constants and 
phonon spectrum, which are also obtained from the total energy.  I will briefly describe 
quantum-mechanical forces on the atoms and molecular dynamics simulations below.  Although 
I have cautioned that interpretation of the one-electron eigenvalues can be risky I do not want to 
give the impression that they are of no use.  On the contrary, there are many applications of 
density functional theory that focus on the eigenvalues (band structure or electronic density-of-
states).  Many experimental probes, including electron energy-loss spectroscopy (EELS), x-ray 
absorption spectroscopy (XAS), photoemission spectroscopy (PES), inverse photoemission 
spectroscopy (IPES), and optical spectroscopy, all provide varying degrees of information 
regarding the band structure.  In some cases an accurate theoretical treatment requires methods 
that go beyond density functional theory (e.g. optical properties of semiconductors and 
insulators).  In addition to bulk materials it is also possible to apply density functional theory to 
systems in lower dimensions.  I will describe the application to surfaces, impurities, and defects 
below.  Another area of broad application is magnetic systems and I will conclude this paper by 
discussing spin-polarized density functional theory and the current controversy regarding 
magnetic calculations for actinide materials. 

 
A. Molecular dynamics and thermal properties 

 
The quantum-mechanical forces on the atoms can be obtained directly from the total energy 
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Equation (10) corresponds to Newton’s second law of motion and can be used as the basis for 
molecular dynamics simulations.  These simulations correspond to a classical treatment of the 
atomic nuclei but a fully quantum-mechanical treatment of the electrons.  This methodology is 
called quantum molecular dynamics (QMD) and it enables the study of thermal properties of 
condensed matter systems, including melt curves, temperature-dependent phase diagrams, the 
atomic structure of liquids, and many others.  QMD simulations are extremely computationally 
intensive, especially for high-Z materials such as actinides.  Recently QMD simulations have 
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been carried out for liquid uranium.12  The forces in equation (10) can also be used to determine 
the optimal atomic positions for complex crystalline phases.  The procedure is to let the atoms 
move in the direction of the forces until the residual forces are essentially zero.  The resulting 
atomic structure is labeled as “relaxed” and corresponds to a local minimum in the total energy 
and is therefore predicted to be at least metastable. 

 
In contrast to QMD simulations, classical molecular dynamics (MD) simulations replace 

equation (10) with a force law that is obtained empirically or semi-empirically.  The result is that 
there is no quantum mechanics because the electrons have been removed from the problem.  In 
essence the empirical force law corresponds to integrating out the electronic degrees of freedom, 
leaving only effective forces between the atoms.  Various names are associated with classical 
MD simulations, including modified embedded-atom method (MEAM), model generalized 
pseudopotential theory (MGPT), Lennard-Jones potential, etc.  All of these names correspond to 
a particular choice for the empirical force law.  The same thermal properties can be studied as in 
the case of QMD simulations.  Although they are less accurate than comparable QMD 
simulations, classical MD simulations are much more computationally efficient and therefore it 
is possible to study much larger systems and longer time scales than is possible with QMD 
simulations. 

 
B. Surfaces, impurities, and defects 

 
It is frequently advantageous to be able to use the same three-dimensional crystal code to 

also study lower dimensional systems such as surfaces (two dimensions) and impurities (zero 
dimensions).  The procedure is to create artificial three-dimensional periodicity by constructing a 
“supercell” that preserves periodic boundary conditions in all three dimensions.  This procedure 
is illustrated schematically in figure 5 for a two-dimensional surface problem.  Two-dimensional 
sheets (or “slabs”) of bulk material are separated by two-dimensional vacuum regions.  Normal 
periodic boundary conditions are preserved in the directions parallel to the surface but the slabs 
and vacuum regions are also repeated periodically in the direction perpendicular to the surface.  
It is necessary to test the convergence of whatever quantity is being calculated with respect to the 
perpendicular thickness of both the slab and vacuum regions.  A one-dimensional line or wire 
could be handled in a similar manner. 

 
The analogous method for treating a localized defect or isolated impurity is to start with a 

large box containing a single defect and then periodically repeat this supercell in all three 
dimensions, as illustrated in figure 6a.  Once again it is necessary to carry out convergence tests 
to insure that artificial defect-defect interactions are sufficiently small.  Note that the net result is 
an ordered array of defects.  The procedure for treating disorder is to use a bigger box (or 
supercell) so that a distribution of defect sites can be included, as shown in figure 6b.  This 
solution for handling disorder is numerical and can quickly become very computationally 
expensive.  In contrast the coherent potential approximation (CPA)13 provides a mathematical 
solution to the problem of disorder.  CPA-based calculations enable an accurate treatment of 
truly random disorder and they are much more computationally efficient than using the supercell 
method.  However, the CPA approach is typically limited to substitutional impurities.  The 
cerium-thorium alloy system provides a recent example in which the accurate treatment of 
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substitutional disorder provided by the CPA yielded an improved agreement with measurements 
of a pressure-induced phase transition.14

 
C. Magnetic density functional calculations for plutonium:  Fact or fiction 

 
Magnetism can be treated using spin-polarized density functional theory in which the total 

density is divided into spin up and spin down densities 

)()()( -tot rrr ρρρ += + (11) 
 

The local density approximation is then replaced with the local spin-density approximation 
(LSDA) but otherwise magnetic calculations are carried out in the same manner as nonmagnetic 
calculations.  Söderlind and Sadigh15 have used this approach to calculate the total energy and 
equilibrium volume for each of the six known polymorphs of plutonium at ambient pressure.  
The theoretical equilibrium volumes are in very good agreement with experiment and the 
corresponding relative energy differences are consistent with the complex experimental phase 
diagram.  This level of agreement is truly remarkable, especially since it was thought until 
recently that density functional theory was not even capable of accurately treating all six phases, 
a number of which are believed to exhibit strong electron-electron correlation.  However, the 
prediction within the calculations of large magnetic moments is somewhat controversial since 
experiments appear to suggest that there are no moments. 

 
The question I will address here is whether or not the presence of a magnetic moment in the 

calculations should invalidate the results.  As I have stated a number of times, the total energy is 
the fundamental quantity in density functional theory—not the single-particle eigenvalues or 
wavefunctions.  In particular, the total energy is variational in the electron density, which means 
that the energy is somewhat insensitive to errors in the density.  The primary effect of 
introducing spin polarization (magnetism) in this case is to provide an extra variational degree of 
freedom that leads to a dramatic improvement in the calculations.  It turns out that this result is 
not accidental because spin polarization produces a splitting of the f-band into occupied and 
unoccupied pieces, which is precisely the essential physics contained in more accurate correlated 
electron theories such as dynamical mean field theory.  While the exact nature of this splitting 
may be incorrect within spin-polarized density functional theory it appears that the variational 
principle nonetheless leads to robust total energies.  It therefore seems to me to be a mistake to 
focus too much attention on the presence or absence of a magnetic moment.  In the end it is more 
constructive to ask what we can learn from the density functional calculations.  In particular, it 
appears that strong electron-electron correlations are present in the low-temperature α-phase in 
addition to the higher temperature phases.  Ultimately these calculations represent a significant 
challenge to correlated electron theories such as dynamical mean field theory that are not yet 
able to provide calculations at the same level of accuracy for all of the six phases. 
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FIGURE CAPTIONS 
 
Figure 1.  The transition pressure Pt  between low- and high-pressure phases can be obtained by 
finding the common tangent (dashed line) between the energy as a function of volume curves for 
the two phases. 
 
Figure 2.  The calculated band structure of silicon showing a band gap of 0.5 eV.  The 
experimental gap is 1.2 eV, more than a factor of two larger. 
 
Figure 3.  In a local approximation the exchange-correlation energy at point  r1  is the same for 
both the “A” and “B” electron densities because they are both equal to ρ1 at this point.  However, 
in a non-local theory the exchange-correlation energy for A and B at  r1  could be different 
because the electron densities are not the same at other points. 
 
Figure 4.  If the relative energy difference between low- and high-pressure phases (see figure 1) 
increases with the use of a generalized gradient approximation then the calculated transition 
pressure can increase relative to the pressure calculated using the local density approximation. 
 
Figure 5.  Schematic illustration of a surface supercell, or slab geometry, in which regions (or 
slabs) of two-dimensional bulk material are separated by vacuum regions.  Note that each slab 
has two surfaces that may or may not be equivalent by symmetry and that periodic boundary 
conditions exist for all three dimensions. 
 
Figure 6.  Schematic illustration of the supercell method for treating localized defects or 
impurities.  Panel (a) shows an ordered array of defects while (b) shows how using a bigger 
supercell enables the treatment of disorder by allowing a distribution of defect sites while still 
preserving the overall defect density.
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